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Abstract. Witten [12] has interpreted the Donaldson invariants o f  four-manifolds 
by means o f  a topological Lagrangian. We show that this Lagrangian shouM be 
understood in terms o f  an infinite-dimensional analogue o f  the Gauss-Bonnet 
formula. Starting with a formula o f  Mathai and Quillen for the Thorn class, we 
obtain a formula for the Euler class o f  a vector bundle, which formally yields 
the explicit form o f  Witten's Lagrangian. We use the same method to treat La- 
grangians proposed for the Casson invarian t. 

§el. INTRODUCTION 

In [12] Witten introduced a Lagrangian leading to a topological quantum 

field theory in which the Donaldson invariants of 4-manifolds [7] appear as 

expectation values. That such a field theory should exist was suggested in [ 1 ], 

based on the work of Floer [8]. 

Witten's Lagrangian has been re-interpreted in the physics literature in a variety 

of  ways [4, 9], but these are unlikely to help mathematicians understand the 

significance of Witten's work. In this paper we present an alternative approach 

which seeks to explain Witten's theory in terms of an infinite-dimensional version 

of the Gauss-Bonnet theorem (and its generalizations). In particular the explicit 

form of Witten's Lagrangian is derived as a direct consequence of standard 
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formulas in differential geometry. 

To understand how this comes about we recall that classical integration theory, 

dealing with the integral of  scalar functions or measures, leads naturally to the 

exterior differential calculus when one considers integration on sub-manifolds. 

When systematized this leads to the de Rham theory connecting differential forms 

with homology. A similar story should hold, in appropriate cases, in infinite- 

dimensions. Now quantum field theories are formally described by a Feynman 

integral and it is therefore reasonable to expect differential forms to appear 

in such Feynman integrals, particularly in relation to topological questions. 

We shall show that this is indeed the case for Witten's theory and accounts for 
the Fermionic integrals that appear there. 

In finite dimensions an oriented 2m-dimensional real vector bundle E over 

a manifold X has an Euler class in H 2m (X). In particular if dim X = 2m, and 

X is compact and oriented we get an Euler number  e by evaluating the Euler 

class on X. This Euler number can also be interpreted as the number of  zeros 

(counted with appropriate signs) of a generic section s of  E. There are also inte- 

gral formulas for e of "Gauss-Bonnet" type i.e. expressions 

(1.1) e = fJc to 

where to is a suitable de Rham representative of the Euler class of  E. The classi- 

cal Gauss-Bonnet theorem expresses to in terms of the Pfaffian of the curva- 

ture of  a connection on E. There is a more general formula, due to Mathai and 

QuiUen [10] which depends on a connection and a section s. Their form is de- 

fined by 

(1.2) to --- s*U $ 

where U is a closed differential form on E which is a "Gaussian representative" 

of  the Thorn class. This means it has Gaussian decay along each fibre Ex. Taking 

s = 0 gives the classical formula, while replacing s by ts with t ~ ~ and using 
stationary phase approximation gives the number of  zeros of  s (when generic). 

When n = dim X > 2m the Mathai-Quillen form (1.2) is a 2m-form on X. 

To get real numbers we have to form integrals 

(1.3) £ r/co s 

where 77 runs over representatives of  the (n -- 2m)-dimensional cohomology 

of  X. 
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In f'mite-dimensions the use of  a non-zero section s to give the general for- 

mula (1.2), as opposed to the simple classical formula (1.1), is an unnecessary 

luxury. However in infinite dimensions it can be essential. It may be possible 

to make sense out of (1.2) when (1.1) is quite hopeless. It is then the Mathai- 

Quillen formalism comes into its own. 

In fact we shall show that Witten's interpretation of  the Donaldson invariants 

is precisely of  the form (1.3) where X is the space of gauge equivalence classes 

of  (irreducible) SU(2)-connections on a 4-manifold. The section s is the self- 

dual part of the curvature and the form ~s is just the exponential of Witten's 

Lagrangian, while the forms r/ are the "observables" whose expectation value 

is being computed. The computation of (1.3) as 

(1.4) lim I rt~ ts 
t - -+~  

recovers Donaldson's.definition of his invariants [7] in terms of  the homology 

of  the moduli space of  instantons. 

Since the appearance of  [12] Witten has produced a number of other topo- 

logical quantum field theories. At least one of these, the "Casson theory" can, 

as we shall now show, be explained in similar terms. In fact the Casson invariant 

of  (homology 3-spheres) has been interpreted by Taubes [11] as the algebraic 

number of zeros of a cotangent vector field on the infinite dimensional manifold 

of  (classes of) irreducible connections. A minor extension of  the argument for 

the Donaldson invariant shows that this number can be written as an appropriate 

integral. This reproduces the Lagrangian which Witten has discussed. As with 

the Donaldson theory this uses a choice of Riemannian metric on the base mani- 

fold. However, unlike the Donaldson theory, where only the self-dual part of  the 

curvature is used, the vector field of the Casson theory is the whole curvature 

and is metric independent. This means there is another Lagrangian (also due 

to Witten) for the Casson theory which is metric independent. Essentially this 

just uses delta functions at the zeros of the curvature and so is, in a sense more 

"singular". It can be derived as a limit of the metric - independent Lagrangian 

along the lines of ( 1.4): 

There are three general comments that should be made at this stage. In the 

first place the symplectic or Liotrville volume of a 2n-dimensional symplectic 

manifold with symplectic form w is wn/n! . Formally this can be replaced by 

exp (w), with the understanding that in performing the integration only diffe- 

rential forms in the top dimensioh (i.e. 2n) give a non-zero answer. In infinite 

dimensions the exponential still makes sense but there is now no "highest di- 

mension". This should be borne in mind when we write formulas with a view 
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to an infinite-dimensional generalization. 

The second point to note is that we shall be ignoring the singularities pro- 

duced by reducible connections. This is tantamount, in finite dimensions, to 

ignoring boundary effects and is certainly not topologically justllied in general. 

In fact the difficulties due to reducible connections are well-known both in the 

Donaldson and Casson theories. It is not yet clear to what extent these diffi- 

culties can be circumvented. Certainly Donaldson has shown, from his classical 

point of view, that his invariants are well-defined in considerable generality. 

We shall not however enter into these more subtle questions and we will con- 

tent ourselves with a formal treatment consistent with Witten's work. 

Finally it is perhaps worth pointing out that in deriving Witten's form of 

the Donaldson Lagrangian we nowhere need to use the fact that the space ~¢ of 

connections is an affine space, only that it is (formally) a Riemannian manifold. 

However, for the Casson invariant, explicit use has to be made of the affine 

structure of ~¢. 

In §2 we shall describe in detail the formula of  Mathai and Quillen [10] and 

apply this to the quotient of a Riemannian manifold by a compact group. This 

will then be applied formally in §3, with the manifold replaced by the affine 

space ~¢ of all G-connections on a compact oriented 4-manifold and the group 

replaced by the infinite-dimensional group ~ of  all gauge transformations. We 

shall explicitly show how to derive Witten's Lagrangian [12]. 

In §4 and §5 we shall apply the same ideas to the Casson theory. We begin 

by extending our application of  the Mathai-Quillen results to a slightly more 

general case. This is then applied to the space ~¢ of G-connections on a homology 

3-sphere, and we derive the metric-dependent Lagrangian introduced by Witten 

[14]. Finally we show how this is related to the metric-independent Lagrangian. 

We are greatly indebted to Simon Donaldson and Daniel Quillen who helped 

to provide the main ideas presented here. We are also grateful to Edward Witten 

for explaining to us all his ideas on topological quantum field theories. 

§ 2. THE EQUIVARIANT EULER CLASS 

We consider the following situation: G is a compact connected Lie group 

acting freely by isometries on an oriented Riemannian manifold P of dimension 

2m + d (where d = dim G) and V is a real vector space of dimension 2m with 

an orthogonal action of G Thus P -~ P I G  = X is a principal G-bundle and we 

can form the vector bundle E over X associated to the representation V. Using 

the Riemannian metric on P to define orthogonals to the G-orbits we get a con- 

nection for the principal bundle P ~ X and hence for the associated vector bundle 

E. The Euler form of E is then defined as a (2m)-form on X and we are interested 
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in computing this in various ways. In particular we shall use a fixed G-invariant 

map s : P ~ V and the induced section of E. 

Our starting point is the paper [ 10] by Mathai and Quillen. They det'me a cer- 

tain explicit representative for the generating Thom class in H 2 m  (V'), the equiva- 

riant cohomology with compact supports of  V. Their model of  equivariant 

cohomology for any G-manifold W is the G-invariant elements of  ~2*(W) ® S ( g * )  

with the differential d 6 defined as follows, d 6 = 0 on elements o f S ( g * ) a n d  for 

¢ E ~2*(W) we define d 6 (¢) E I2*(W) ® g* by 

d 6(¢)~  = d ¢ - i ~ ( ~ b )  for ~ E g .  

The Mathai-Quillen element lies in I2*(V)® S ( g * )  and is defined by the formula 

(2.1) U = I r - m e  - x "  x p ~  4 + i d x t x  ~ ×  

Here x = (x] . . . . . .  xEm ) are coordinates for V = R 2m and × = (×1 . . . . .  X2m ) 
are Grassmann algebra variables. The Fermion integral f ~ × means that we 

expand and take the coefficient of  X 1 ̂  ×2 ^ • • • ̂  ×2m " Note that we get an 
even number of i and so a real answer. ~2 is the skew-symmetric "universal cur- 

vature matrix" ~2/k. More precisely it is the image of  the G-curvature matrix 

under the representation 

p " G ~ S O ( 2 m )  

R e m a r k s  

(2.2) U does not have compact support but the exponential decay of  the factor 
- - X  2 

e is equally good 

(2.3) Mathai and Quillen write U in the alternative form 
(2.4) U = (x2~r)- m Pf ( I2 )  e - x= -dx tS~  - lax 

This can be viewed as an evaluation of  the Fermionic integral (at the expense 

of inverting f/). The equivalence of  (2.1) and (2.4) is given in [10, (1.8)]. 

(2.5) The expressions X t dx and ×tI2x in (2.1) clearly show that X should be 

viwed, invariantly as a tangen t  vec tor  to the manifold (here V), i.e. as an element 

of  V itself. This also means that we can pass to the cotangent bundle T * V  with 

coordinates (xi ,  ~ )  and consider X i = d~i. Then dxtx = ~ d x  i ^ d~ i is the canonical 
2-form of the symplectic manifold T ' V ,  while xt~2x is a 4-form. The Fermionic 

integration can then be described in intrinsic geometric terms as follows: given 

a differential form on T ' V ,  restrict to the zero section, divide by the normal 

volume element and integrate. 

(2.6) We should explain more about f/ .  The representation p on the Lie algebra 
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level assigns to  each ~ ~ g a skew-symmetr ic  matrix {P(~)jk } whose entries are 

l inear  forms in ~. Hence i ~ k  XjP(~)jkX k is a l inear funct ion on 9 with values 

in the exter ior  algebra o f  the  Xi" Thus the  exponen t  in (2.1) is a linear func- 

t ion o f  ~, dx.  

If  now P G X is a pr incipal  G-bundle  wi th  connec t ion  and curvature matr ix  

~2 then  we can in terpre t  (2.1)  as a G-equivariant  form on P x V. It represents  

the  Thorn class of  the  vec tor  bundle  E = (P x V)/G. More precisely its horizontal 
part descends  to  a closed form on E which represents  the Thom class. By this 

we mean  the form U is to  be evaluated on the pro jec t ion  o f  tangent  vectors  

on the hor izon ta l  par t  o f  the tangent  space to P x  V, with respect  to the G-con- 

nec t ion  pul led  back f rom the  connec t ion  on P. In o ther  words,  if H is the  
P 

hor izonta l  subspace at  p,  then  the hor izon ta l  subspace at  (p, o) is H • V. 
P 

Note .  To get an expl ic i t  fo rmula  for  this  hor izonta l  part  we need to use the 

Weil a lgebra as in [10]. 

F o r  a pr incipal  G-bundle  P ~ X the connec t ion  is def ined expl ic i t ly  by a 

1-form 0 on  P wi th  values in g. The curvature  is then 

~2 = dO + 1/2 [0, 0]. 

Note  that  (by  def in i t ion)  0 = 0 on hor i zon ta l  vectors  so tha t  ~2 and dO coincide 

on hor izon ta l  vectors.  Thus in the fornmla  for  U we can replace ~2 by dO since 

we are on ly  evaluat ing on hor izonta l  vectors.  

Now for any  group ac t ion  on a Riemannian  manifold  (no t  necessarily free) 

we have a canonical  1-form p with values in 9"  defined by 

v~(t~)= (C~, e~) ~ E 9, ~ tangent  vec tor  

where  C~ is the  tangent  vec tor  field def ined  by ~ and ( , )  is the  inner  p roduc t  

o f  the  metr ic .  Clearly v vanishes o n  hor izon ta l  vectors. To compare  it with 0 

we need on ly  evaluate it  a long G-orbits .  Also we shall convert  v into a 1-form 

with  values in 9 by  using the Killing form on 9. We then have an i somorphism 

C : 9 ~ T  

where  T is the  tangent  space along the G-orbi t  at a po in t  o f  the  manifold.  Both 

spaces have inner  p roduc ts  and these differ  b y  R = C'C, i.e. 

<c~, cn> = (R~, n) 

where ( , ) is the  metr ic  on T and ( , ) is the  Killing form on g. Ident i fy ing g, 

wi th  g* by  the Killing form,  0 on vert ical  vectors  is given by  

0~ (~) = (~, C -  1 ~). 

Putt ing/3 = C -  1 ot so that  
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0~ (a)  = (~,/3) 

while v~ (c~) = (C~, C/3) = (R~, 13) we see that v = RO or 

(2.7) 0 = R -  x v. 

Note that  

dO =R -a d v + d ( R - 1 ) v  

and the last term vanishes on a pair of  horizontal  vectors. Thus, on horizontal  

vectors, we can replace d0 by R -  1 dr. In particular we can do this for  the Thorn 

form (2.1). 

In this form the explicit inverse R -  1 is disagreeable. However, we may elimina- 

te this by  using the Fourier  inversion formula. Recall that, for  a single variable 

x,  this takes the form 

1 fe_ia~ eiX~f(x) d~ dx. 
f(a) = 27r 

Replacing a by a/X, ~ by ~ we get 

f(a/X)= ~ -ia~eiXX~ f(x) X d~ dx. 
2~)  

The corresponding formula for d variables and ;~ replaced by a non-negative 

self-adjoint matrix R is then 

(2.8) f (R-  1 a) = (2~r)- a f e- i<a'~> e"X'R ~> f(x) d e t R  ~ ~ x .  

This shows that we can effect the substitution x --, R -  l a  by an integral formula 

that  does not  explicitly invert R. 

We shall apply this with n = dim G = d and the Fourier  transforms being 

over Lie algebra variables ¢,;k. Using (2.8) and (2.1) with I2 replaced by R -  1 dv 

and a = dv we get 

f (2.9) U=(27r)-d~r-me -x2 exp - + i d x t x - i ( d v ,  ~k) 

+ i ( ¢ , R ~ ) l d e t R  ~ X  ~ ¢  ~ .  
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Recall that  this formula is to be interpreted as giving a differential form on 

E = (P x V ) / G  by taking the h o r i z o n  ~ part  on P x V, descending to E. We can 

describe this process alternatively by first multiplying by the invariant volume 

form ~ g along the orbits, normalized so that 

and then integrating over the fibre. Now to get ~ g along the fibres we must 

use the connection form, and we can write this as a Fermionic integral over a 
Lie algebra variable 7/: 

(2.10) = fexp(0, n) n 

where ( , ) stands as before for the (normalized) Killing form. Replacing this 

by the metric on P we get 

(2.11) (det R) ~ g  = f e x p  (dA, Cr?) ~ 

where the A i are coordinates on P. Substituting this into (2.9) eliminates the 

factor det R and leads to the formula 

x2 f Ixtp($)X = m ~ + i d x t x  - i (dr ,  X) (2.12) U 2 - d T r - d -  e -  exp 4 

/ 

Here in addition to the 2 Fermionic integrations over r/, X and the integrations 

over the Lie algebra variables ~, ;X we also understand an integration over the 

fibre o f P  x V ~  (P x V) /G  = E.  

This formula is our final formula for the Thorn class. To get a formula for 

the Euler  class of the vector bundle E over X we must pick a section s : X ~ E 

or equivalently a G-equivariant map s : P -+ V and pull back the Thorn class. 

Finally to get the Euler number of E (assuming X compact and oriented) 

we must integrate the Euler class over X. Replacing x by s in (2.12) we end up 

with the following integral f o r m u l a  f o r  the  Euler  n u m b e r  o r E  
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f t xt°(¢)x (2.13) 2-art -d-m exp - [ s [  2 + ~ +idstx- i (dv,  X) 
4 

+ i (¢, RX) + (dA, C7/) t ~ r / ~ X  ~ ¢  ~X.  
! 

After integrating over r/, X, ¢, X we are left with a differential form on P and 

we then integrate this over P. 

If we want to put (2.13) into the standard supersymmetric framework by 

eliminating differential forms we replace the dA i by Fermionic qJi (representing 
a basis for the tangent space to P) and use the Fermionic integral formula 

f f ( ~ )  ~ ~ A  = f(dA). 

Then (2.13) will become an integral of the form 
? 

(2.14) / e x p  (-~)  ~ ~ ~ X  ~ A  ~ ~ X  

d 
over 3 Fermionic and 3 Bosonic sets of variables. 

§ 3. THE WITTEN LAGRANGIAN 

We are going formally to apply formula (2.13), in the form (2.!4),  to the 
case when 

G =  f~, P = ~ ¢ ,  V=122+(g), s = - - F + .  

Here ~¢ is the space of irreducible connections on a principal G-bundle over 

a compact oriented 4-manifold M, ~ is the group of  bundle automorphisms 

and F+ E I22+ (9) is the self-dual part of the curvature. Thuss = 0 i n ~ ¢ / ~  gives 

the moduli space ~ /  of (anti-) instantons. We assume for the moment that we 

are in the case where we expect dim ~¢ = 0. Donaldson only treats the case 

G = SU(2) because of subtleties involving singularities in the moduli space. 

Our treatment ignores such questions, so we work with general G. 

We shall now identify the terms that occur in the Lagrangian . i  ° in (2.14). 

We have three Bosonic variables 

A E ~I(M,  9) 

X, ¢ E gZ° (M, g) 

and three Fermionic variables 

~ ~ ~ l  (m, g) 
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x en2+( M, ~) 

ne~2°(M, g) 

To c o n f o r m  to  Witten's notat ion,  ), has been replaced by ), /2 throughout.  

The inner product  ( , )( on ~i(M, 9) is the Killing form combined  with the 

usual inner product  o n  ~T(M). 
The individual terms are as fol lows:  

1. -Isl2 = -  IMIF+ 12: 

Since 

f g ( I  1 2 1 2) = k F+ F 

(the first Pontrjagin class), we may replace - l S[ 2 by 

2 IF[2 2 

Note that Witten eventually includes this topological factor in his Lagrangian: 

[12], (2.41). 

2. The action of Lie((~) on ~ is given by ¢ --* d A (¢). Hence the operator 

R on Lie(ff  ) is the Laplacian A A = d~d A . Thus the term i/2 (¢, R)`) is 

i 

2 (¢' )`)o 

3. i (dA, 01) is the l-form on ~¢' whose value on qJ E TA,~t is i(t~, dArl) I . 

+ 
4. ixtds : dsOk) = --d A ~k, so this is a l-form on ~¢whose value on ~b is 

- fiX, d A ¢J)2" 

5. x t ¢ x / 4 :  ¢ E Lie(V)  acts on X by sending it to [X, ¢]- So the term is 

114(×, [X, ¢])2" But since the Killing form is invariant under the adjoint action, 
this becomes (where Tr denotes the Killing form) 
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1/4 fM Tr([×,×]  ~). 

6. - i/2 (dr, X): v is a one-form on ~¢ with values in L i e ( ~  ) given by 

(v (~ ) ,X)0  = (~,  d A X) 1 • 

Holding one tangent  vector  ffl fixed and varying A, A ~ v a ffl is a funct ion 

~¢ ~ L i e ( ~  ) whose derivative with respect to if2 E T A ~¢ is given by  

~k)o = ( ¢ 1 '  [ i f2 '  X])I = f Tr(¢l ^ *[~k2' X]) (~2( r '~1) ,  JM 

= fM Tr ([qJ~, *~21 X). 

This expression is an t i symmetr ic  in ~1 and ~k 2. Since ~¢ is affine and ~k 1 , 

¢2 are constant  vector  fields, their Lie bracket  is 0. So our te rm is the 2-form 

given on f f l '  if2 by 

-- "~ ( d t ' ( f f l ,  f f 2 ) , ~ k ) =  ~- T r ( [ f f l , * f f : ]  X). 

To obtain Witten 's  Lagrangian we must  replace the real variable 0 in our  for- 

mulas by  i0 (corresponding to analytic continuation).  We then obtain precisely 

the part i t ion funct ion for  Witten's  Lagrangian (2.7), with the addit ion of  a topo-  

logical term as in (2.41). 

In the more  general case dim ~ ¢  :/= 0, one has an elliptic complex  
~2 ° a a  I21 ~ ~22+, whose index is - dim ~¢  generically. This means formal ly  

that  the Euler class we have described above has codimension dim ,1/ ,  and to 

get a numerical  invariant  one must  integrate it against o ther  differential forms 

on ~ ¢ .  We recall Donaldson 's  cons t ruc t ion  of  polynomial  invariants in this case. 

I f  Q is the principal G-bundle f rom which the connect ions come,  then ~ acts 

on Q so we may form the space ~¢ x ~ Q : = .~ , which is a G-bundle over 

~ ¢ / ~  x M. Integrating c 2 ( - ~ )  over a class 7 i E H k .(M) and then restricting 

to J 4  C ~ ¢ / ~  gives a map • : Hk(M)~ H4-k(~/~). When (k 1 . . . . .  k r) 
satisfy 
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--~(4 - k i) = dim ,~/, 
i 

the Donaldson invariant is defined as: 

f ,I,(~ a ) ^ . . .  A ¢(~r)" 

If  M has a metric, an explicit connect ion is given by the orthogonals to the 

G-orbits in .~ for a certain metric on .~ : this comes from the metric on d x  Q 

given at (A, q) by the standard metric on ~ and the lifting o f  the M-metric 

to  Q by means of  the connect ion A and a metric on G. The curvature ~ c a n  be 

calculated explicitly [2]: for t i E T Q, z ,  o E T A ~ it is 

~'2,0 ( t l '  t2 ) = FA ( t l '  t2 ) 

~-1,1 (t, r )  = r ( t )  

~ '0 ,2( r ,  o) = R  -1  dr ( r ,  o) 

(in our  previous notation).  

When dim J/¢ =/: 0, Witten formulates the Donaldson invariants as expectation 

values o f  certain operators (see [12] (3.40)) 

f k WI¢ ' 

where W k is a k-form on M constructed out  o f  the fields: he lists 

W 0 = 1/2 Tr ¢~2 

w 1 = Tr(¢~ ̂  ~ )  

W 2 = Tr (1 /2  ~ ^ ¢J + i~ ^ F )  

IV 3 = i T r ( ~  ^ F )  

W 4 = --  1/2 Tr (F^  F). 

In fact these arise from the integral over ~ o f  the produc t  o f  the above Euler 

class with classes ~( ' r )  written explicitly in terms of  the above ~ .  The compo-  
nents c. 4 - i o f  c a = T r ( ~ )  in I2i(M) ® ~4 " i(d~¢ ) are given by  [4]: 

I 

c' o = Tr(  o,2 

= 2  Tr( 2  1,1) 
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c 2 = Tr(~1,1 ~'~1,1 ) + 2 Tr ( ~2,0 3~'0,2 ) 

c~ = 2 rr (  ~ 2 , o  '~1,1 ) 

c o = Tr( ~2 ,0  ~2,0)= Tr F 2 . 

Up to overall normalisation factors and the replacement of  ~ by i~, we find 

that the expectation value of Witten's-operators 

i i Wki 

[ 12, (3.40)] in the path integral is just our Euler class integrated against the 

corresponding forms 

C -k i  E~'~4-ki(~)" 
~ t  k i 

(Recall that the double Fourier transform (2.8) turned any express ionf(R-1  dr) 

intof(~b): this is what happens to ~0,2 )" 

§4. THE CASSON INVARIANT 

We consider H = SU(2) and Y a homology 3-sphere. From now on, ~¢will 

denote connections on the bundle Y x H ~ Y, i.e. ~¢ -- I21 (Y, h ). 

The Casson invariant was originally defined in terms of a Heegaard splitting 

of  Y into Y1 t.J Y2 along a surface X, as the intersection number of  the sub- 

manifolds of  Rep(Ir 1 (~,), H) coming from rrl(Y/). Since representations of~r I (Y) 

correspond to flat connections on the trivial H-bundle over Y, one may equate 

this with the algebraic number of  fiat connections. 

Taubes [I 1] has justified this, interpreting the Casson invariant as the "Euler 

n u m b e r  of  ~ ¢ / ~  in the following way: the assignment A ~ *F4 defines a 

vector field on ~¢ which descends to a vector field on ~ ¢ / ~ .  For a finite di- 

mensional manifold X, the Euler number is the signed sum of  the zeros of  a 

generic vector field u. The sign at a zero p is sign (det Vv) where Vv : T p X ~  TpX 
is the covariant derivative. In the infinite dimensional case, the zeros of  *F 
are the fiat connections: their relative signs are defined via the spectral flow 

of a suitable operator ~Tv along a path between two zeros. The absolute sign is 

defined via a technical procedure which relates everything to the product con- 

nection. To do this, Taubes switches from working on ~ ¢ / ( ~  to working on 

~¢ x Lie (~. The signed sum of  flat connections gives the. Casson invariant. 
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Witten has proposed two Lagrangians whose partition functions represent 

the Casson invariant. The first of  these [ 14] depends on the metric on Y, and 

arises from reduction of the Donaldson invariant Lagrangian from four to three 

dimensions: its Bosonic part is 

f 
(4.1) "~B= Jy Tr(lfl2 +1 dA¢I 2 +IdAXl 2 +laAol 2 

+ [~b, X] 2 + [~, o12 + [X, ol 2) 

where o E ~2°(y, h ) comes from the fourth component  of  the connection. 

(A similar dimensionally reduced Lagrangian is discussed in [3, 6]). The second 

Lagrangian [13] is independent of  the metric on Y: it is 

f 
(4.2) .2o= Jr rr(B ^ p~ + x ^ a a ~ , )  

where all fields are in ~1 ( y , ~ )  and (4, ~b) and (B, X) are boson-fermion pairs. 

(This Lagrangian is discussed in [5 ]). 

We derive an integral formula for the Casson invariant as an Euler number 

e f o r ~  ¢ / (~,  similar to that described above for the Donaldson invariant. 

§ 5. THOM AND EULER FORMS OF A QUOTIENT BUNDLE 

In the Casson invariant situation, we wish to write the Euler number of  the 

bundle T(~//(~ ) ~ ~r//(~ as a formal integral over ~¢. This cannot be handled 

directly as the Donaldson invariant was, for this bundle is not associated to 

the principal bundle a~' ~ .~ / f~ .  However, it is a quotient of two such associated 

bundles, and we shall see this leads to the required integral formula. 

Let us establish some notation. 

SupPose P is a principal G-bundle over X, and V, V' are even-dimensional 

inner product spaces on which G acts via representations into SO(V), SO(V'). 
Suppose P x V' embeds i n P  x V by a G-map 

(p, o) -+ ~(p, o) = (p, v(p) o), 

where y(p)  : V' -* V is linear and injective. Thus the vector bundle P x a V' 

embeds in P x a V." denote the resulting quotient bundle by E. 

Let s : P -* V be a G-map satisfying s(p) E (Ira 7(p))X);,this gives a section 

o f  L. 

Define a G-map ~" : P x V' ~ P x  V by: 
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¢(p, o) = (p, ,y (p )  o + s(p)).  

Our result is then given by the following 

PROPOSITION: With the above notation, the Euler class o f  E is lr,  ~*to, where 

to is the Thorn class o f  P x a V and 7r' : P x c V' ~ X is projection. 

This Proposit ion thus enables us to express the Euler class o f  E in terms o f  

the Mathai-Quillen formula.  

REMARK: In the case that  interest us, P =  ~t¢, X = ~ ¢ / ~  and G = f~, where 

~t¢ is the space of  connections on the trivial (SU(2) : = H)-bundle over a homolo-  

gy 3-sphere Y. The spaces V and V' are ~21(Y, h ) and I2°(Y, h ), respectively 

the tangent space to  the affine space ~¢ and the Lie algebra o f  ~ . The group 

acts on these by the adjoint action as in the Donaldson case. The map 

")'(A) : ~2°(Y, h )--*I21(Y, h ) 

is just  d A . One may verify dA.g(g-  log)  = g-  l (dAo)g  f o r g  E G, o E [2°(Y, h)  

so this is indeed a g - m a p .  (Irn'/(A)) ~ is ker d ~ .  The section s : ~ ¢  --, I21 (Y, h ) 

i sA ~ *F A ; this is in ( Im ~/(A)) ± by the Bianchi identity. 

Proo f  o f  Proposition: Let E 0 denote  P x a V, and E ± the image of  P x a V' under  

~. Let to denote the Thorn class o f  E 0. Since E 0 = E ¢ E ±, we have to = uu ±, 

where u and u ± are the Thorn classes o f  E and E ±. We observe that  the bundle 

E 0 ~ E l has a section s *  id such that the following commutes :  

(5.1) 

s a i d  

E ~ E  ± = E ~ "  . . . . . . . . . .  "E]~Tr 
S • 

Thus the Euler class of  E is 

s ' u =  7r,((s*u) u ±) = 7r,((s • id)*w).  

Then consider 

P x  c V' £ ±  
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and observe that ~ = (s • id)a. Thus 

lr , (~*w) = 7t',(a*(s • id)*w) 

' a ,  1 (s • id)*w = 7t,((s • id)*¢o), 

as desired. This uses the fact that for a diffeomorphism a, the pushforward 
~,  = (~- 1 ),. • 

Using the Mathai-QuiUen formula (2.1) for to, we can now write the integral 

of  the Euler class over X as an integral over P x V' by using the volume form 

~ g  of  G along the fibres of  P (~*w is basic since ~ is a G map). We obtain the 
following expression: 

(5.2) e ----- 7/'-m I f~xexpl--is(p),2--[ ,),(p)Ol 2 ÷ Xt~'X 
4 

x V '  

+ ;x~(dls(p) + ~/(p)ol) 1 ~g. 
) 

As usual, we omit  the terms in the exponential depending on the connection 

/9 because of the factor ~ g :  d denotes exterior differentiation of a function 

on P x V'. The ~ factor can be manipulated by a double Fourier transform 

and ~ g  written as a Fermionic integral, exactly as for the Donaldson invariant. 

In the particular case that interests us, we get formally 

 ,ox 
(5.3) ~ ~  ×ex  --lEA 1 2 - 1 d A o l  2 ÷ ~ ÷ 

4 
x Lie( f~ ) 

+ ixtd[*FA ~+td A a] I ̂  g. 
J 

This looks very like the metric-dependent Lagrangian proposed by Witten for 

the Casson invariant. It has a scalar boson-fermion pair not present in the Donald- 

son invariant case, corresponding to the integral over Lie ~¢ . The term IdA o 12 

is present in Witten s metric-dependent Lagrangian: his terms I d.4 X 12, I dA ¢ 12 
result by substituting 

¢'  = ¢ - L  ~ ' = ¢ + 7 ~  

into the term (¢, A A X) that arises from the double Fourier transform. 

Witten [13] also proposes a metric-independent Lagrangian for the Casson 

invariant. We shall see that this arises by taking a limiting case of  the above 

formula and then evaluating the integral over V': the limiting procedure corre- 

sponds to the usual proof  that the Euler class of  a vector bundle is represented 
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by the zero locus o f  a generic sectiuJ,. 

In order to derive the metric-independent Lagrangian, we require an additional 

assumption: 

( 5 4 )  If  s(p) = 0, then lm(ds)p C (lm ~(p))t. 

In our case this is because s(A) = *d A d A whereas ds A = *d A . 

We introduce the notat ion ×T(p),  X z (p) ("transverse ~ and "longitudinal ~) 

for  those Fermionic variables in X that form a basis for (Ira V(p)~t (resp. 

Ira ~/( p ) ). 
To obtain the limiting expression for e, we first observe that  the choices o f  s 

and 3, were arbitrary - so we may replace them by ts, t'y (t E ~).  This gives 

(5.5) e=~r-m f f~xexp{ - t2 - ( [ s (p ) [2+[~(p )o[2 )+  
"Px V ' - -  

+ 
×t I2× 

4 
+ itxtdIs(P) + ~/(p) o]] ^ ~g. 

Next we replace X by t× and take the limit as t ~ oo . ~ X  becomes t 2m C.@X, 
and the term X t I2X disappears in the limit. 

Now for  one real variable y, the distribution given by lim 
VF~5(y). So we get t-*** 

e-- I f~Xr~XL~r(S(P))~L('r(P)O)x 
X V'  

x exp i{×~[dSp(~k)] + ×~V(P) r} ^ ~ g  

(5.6) 

te -t~y~ is just 

where we introduce the notat ions ~, r for tangent vectors  to  P, V'. The integral 

over ~XL then yields 

det (~/(p)) dvol(V') 

and the integral 

fv SL ('y(p)e) det (3'(P)) dvol (V') = 1. 

We are thus left with 
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f 
(5.7) e = Je ~×78T(S)  exp i(X~ ds) A ~ g .  

This corresponds to Witten's metric independent Lagrangian since his factor 

f ~ B e x p i  f y T r ( B A F A )  

is just a way of writing 8(*F A ). The factor ~ g  and the restriction of the Fer- 

mionic integral to (lm ~(p))± rather than all of  V in (5.7) arises from gauge- 
fixing Witten's Lagrangian. 
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